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2.1 BASIC DEFINITIONS

Given topological spaces X and Y, the set of all continuous functions from X to Y is typically
quite large and complicated even in relatively simple cases (e.g., when both X and Y are the unit
circle in R2). In order to study such functions, we are compelled to define interesting equivalence
relations on them and restrict attention to equivalence classes. Among the deepest and most
fruitful equivalence relations between functions X → Y is the notion of a homotopy.

DEFINITION 2.1. Two continuous functions F, G : X → Y between topological spaces X and
Y are homotopic if there is a third continuous function

θ : X× [0, 1]→ Y

(called a homotopy) so that for all x in X, we have θ(x, 0) = F(x) and θ(x, 1) = G(x).

The requirement that θ also be continuous is absolutely essential here, since it is always possi-
ble to find discontinuous θ satisfying the requirements of this definition. Thus, the fundamental
idea behind this definition is to put two functions in the same equivalence class whenever you
can continuously interpolate from one to the other as a parameter t ∈ [0, 1] slides from 0 to 1.
The picture below illustrates the homotopy equivalence of two maps F, G when X is a circle and
Y is R3. These are homotopic if we can find a continuous θ from the cylinder X × [0, 1] to R3

whose restriction to the lower boundary X × {0} coincides with F and restriction to the upper
boundary X× {1} coincides with G.

Homotopies between functions can be used in order to produce an equivalence relation on
topological spaces as well.

DEFINITION 2.2. Two topological spaces X and Y are homotopy equivalent if there are con-
tinuous maps F : X → Y and G : Y → X so that

(1) the composite F ◦ G is homotopic to the identity map on Y, while
(2) the composite G ◦ F is homotopic to the identity map on X.

A pair of continuous maps F and G satisfying the two conditions above are often called homo-
topy inverses of each other, although it is important to note that in general there is no uniqueness
of such inverses — the set of homotopy inverses for a given F might contain several maps.
Homotopy equivalence is a topological property that tends to be largely agnostic to metric infor-
mation. The two panels below are designed to illustrate this phenomenon: in the first case, the
2-dimensional thickened figure-8 is homotopy equivalent to the thinner 1-dimensional figure-8
in its interior. But if we perturb this thinner curve ever so slightly to create a single loop, then
homotopy equivalence no longer holds.
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Two simplicial complexes K and L are said to be homotopy equivalent, or have the same ho-
motopy type, whenever their geometric realizations |K| and |L| are homotopy equivalent in the
sense of the definition above. It may not be immediately obvious that homotopy is an important
equivalence relation between topological spaces — absorbing this fact takes time and experi-
ence. What should be clearer even at this early stage is that homotopy equivalence is far less
rigid than homeomorphism: homeomorphic spaces are always homotopy equivalent, but the
converse does not hold.

2.2 CONTRACTIBLE SPACES

The quest to study topological spaces up to homotopy equivalence has a natural starting point
— we begin by asking which spaces are the least complicated from a homotopical perspective.

DEFINITION 2.3. A topological space X is contractible if it is homotopy equivalent to the
one-point space.

You should check that X is contractible if and only if there exists some point p ∈ X so that the
identity map on X is homotopic to the constant map sending every point of X to p. In particular,
the empty set ∅ is not contractible.

EXAMPLE 2.4. Here are several families of contractible simplicial complexes:
(1) Solids: for each k ≥ 0 the solid k-simplex ∆(k) is contractible.
(2) Cones: the cone over any simplicial complex K (see Definition 1.19) is contractible.
(3) Trees: a tree is a connected graph with no cycles; these are all contractible.

We will prove the contractibility of these after developing some helpful machinery. For now,
it is important to start building a mental database which contains as many contractible spaces as
possible. The next few sections contain a suite of extremely powerful tools for detecting homo-
topy equivalence, and all of these tools rely in one way or another on your ability to recognize
contractible spaces. The underlying reason for this dependence is the following vital result.

LEMMA 2.5. Let X be a topological space and k ≥ 1 an integer. If X is contractible, then any
continuous map F : |∂∆(k)| → X from the hollow k-simplex to X can be extended to a continuous map
F+ : |∆(k)| → X from the solid k-simplex.

PROOF. Even the case k = 1 is quite insightful, so we will go over it carefully. Since |∆(1)|
is homeomorphic to the unit interval [0, 1] and |∂∆(1)| consists of the endoints {0, 1}, we must
show that X is path-connected, i.e., given any pair of points F(0) = x0 and F(1) = x1 in X, there
is a continuous path in X from x0 to x1.
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From Definition 2.3, we know that X is contractible if and only if there is some point p ∈ X
so that the identity map on X is homotopic to the constant map X → p. Thus, there exists a
homotopy θ : X × [0, 1] → X satisfying θ(x, 0) = x and θ(x, 1) = p for all x in X. As we vary t
from 0 to 1 for any given x in X, we obtain a continuous path θ(x, t) from x to our special point p
— in particular both x0 and x1 admit paths to p. Thus, we can concatenate these two paths to get
a path from x0 to x1 that passes through p; more explicitly, the desired extension F+ : [0, 1]→ X
is given in terms of θ by the piecewise-formula

F+(t) =

{
θ(x0, 2t) t ≤ 1/2
θ(x1, 2t− 1) t > 1/2.

This extension is continuous because at t = 1/2 both pieces are guaranteed to equal p. The
following picture may help if the numerology of this formula is mysterious.

The argument for k ≥ 2 is more technical and subscript-infested, but the basic principle remains
the same — homotopies to constant maps allow us to “fill in” the F-images of hollow simplices
to produce F+-images of the corresponding solid simplices. �

In the argument above, we used a homotopy θ to define an extension map without ever hav-
ing an explicit formula for θ; this is quite typical because in general homotopies can get quite
complicated even when relating simple maps between benign spaces. One refreshing exception
to this unfortunate state of affairs is provided by the class of straight-line homotopies: given maps
f , g : X → Y with Y ⊂ Rn, one often attempts to use θ(x, t) = t · f (x) + (1− t) · g(x). Of course,
there is no guarantee that the image of such a θ will actually lie in Y. Our next result highlights
an important instance where this straight-line strategy succeeds.

PROPOSITION 2.6. For each dimension k ≥ 0, the solid k-dimensional simplex ∆(k) is contractible.

PROOF. Let {x0, . . . , xk} ⊂ Rn be any set of affinely independent points, so the geometric
realization of ∆(k) is given (up to homeomorphism) by

|∆(k)| =
{

k

∑
i=0

tixi | ti ≥ 0 and
k

∑
i=0

ti = 1

}
.

Now consider the continuous map θ : |∆(k)| × [0, 1] → ∆(K) that sends each x = ∑k
i=0 tixi in

|∆(k)| and t in [0, 1] to the point

θ(x, t) = [1− t(1− t0)] · x0 + t ·
k

∑
i=1

tixi.
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This formula prescribes a straight-line homotopy between the identity map (at t = 1) and the
constant map (at t = 0) sending everything to x0. Three routine verifications have been left as
exercises: to complete the proof, one must show that θ(x, t) lies in |∆(k)| for all t, that θ(x, 0) is
just the constant map to x0, and that θ(x, 1) is the identity map on |∆(k)|. �

Armed with knowledge of many contractible spaces, we are ready to explore a suite of homo-
topy equivalence detectors.

2.3 CARRIERS

Let K be a simplicial complex and X a topological space.

DEFINITION 2.7. A carrier C for K in X is an assignment of a subset C(σ) ⊂ X to every
simplex σ of K so that C(σ) ⊂ C(τ) holds whenever σ is a face of τ.

We say that C carries a continuous map F : |K| → X if for each simplex σ ∈ K we have
F(|σ|) ⊂ C(σ). Similarly, we say that C carries a homotopy θ : |K| × [0, 1] → Y if for each
intermediate t in [0, 1] the map θt : |K| → X given by

θt(x) = θ(x, t)

is carried by C in the sense described above. The next result is among the most powerful and
widely-applicable tools for testing whether two maps |K| → X are homotopic.

LEMMA 2.8. (The Carrier Lemma) Let C be a carrier for K in X. If the subset C(σ) ⊂ X is
contractible for each simplex σ ∈ K, then (a) there exists a continuous map F : |K| → X carried by
C; (b) any two continuous maps F, G : |K| → X carried by C are homotopic; and (c) in fact, we can
always choose a homotopy θ : |K| × [0, 1]→ X between F and G that is also carried by C.

PROOF. Index the simplices of K as {σ1, σ2, . . . , σm} so that the faces of each simplex have
lower indices than that simplex itself — this can be ensured for instance by indexing all the
0-dimensional simplices before all the 1-dimensional simplices, and so forth. There is now a
filtration {SiK | 1 ≤ i ≤ m} of K (see Definition 1.6) obtained by setting

SiK =
⋃
j≤i

σj.

We will show (b) and (c) by induction on i; the argument for (a) is eerily similar and has been
assigned as an exercise.

Base case: When i = 1 we must have a simplex σ1 of minimum dimension, i.e., a vertex. By
the hypotheses of this Theorem, the maps F and G send our vertex σ1 to possibly distinct points
(let’s call them x0 and x1) in the contractible set C(σ1) ⊂ X. The points x0 and x1 are evidently
the image of a map |∂∆(1)| → C(σ), so by Lemma 2.5 there is a path lying in C(σ1) from x0 to x1.
This path prescribes a homotopy carried by C between the restrictions of F and G to S1K = σ1.

Inductive step, part 1: Now let us assume that for some i > 1 the restrictions of F and G
to Si−1K ⊂ K admit a homotopy θ : |Si−1K| × [0, 1] → X carried by C. We must extend this θ
continuously to the larger space |SiK| × [0, 1]; thus it suffices to define θ on the subset |σi| × [0, 1],
where σi is the unique simplex satisfying Si = Si−1 ∪ σi. Let B ⊂ |Si−1| be the union of geometric
realizations of all the faces τ ≤ σi other than σi itself. Since all the C(τ) are subsets of C(σi) by
Definition 2.7, we note that the image θ(B× [0, 1]) is entirely contained within C(σi). Moreover,
by the requirement that C carries F and G, both F(|σi|) and G(|σi|) also lie inside C(σi).
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Inductive step, part 2: The key observation here is as follows: writing d = dim σi, the product
|σi| × [0, 1] is homeomorphic to |∆(d)| × [0, 1], which in turn is homeomorphic to |∆(d + 1)|.
Consequently, the boundary1 of |σi| × [0, 1] is homeomorphic to the subset

|∂∆(d + 1)| '
(
|∂∆(d)| × [0, 1]

)
∪
(
|∆(d)| × {0, 1}

)
.

Here is a figure illustrating these spaces for d = 2:

Now the first piece of this union |∂∆(d)| × [0, 1] is homeomorphic to B× [0, 1] while the second
piece is homeomorphic to two disjoint copies of |σi|. Our homotopy θ sends the first piece to
C(σi) by part 1 of the inductive step. As for the second piece, we know that

θ(|σi|, 0) = F(|σi|) ⊂ C(σi).

Here the equality follows from Definition 2.1 while the containment is a consequence of the
assumption that C carries F. Similarly, we also have θ(|σi|, 1) = G(|σi)| ⊂ C(σi). So up to
homeomorphism, θ constitues a map from the entire boundary ∂∆(d + 1) to the contractible set
C(σi) ⊂ X. Lemma 2.5 guarantees a continuous extension θ+ : |∆(d + 1)| → C(σi), and using
the homeomorphism ∆(d + 1) ' |σi| × [0, 1] gives us the desired continuous extension of θ to
|σi| × [0, 1]. �

The utility of the Carrier lemma in homotopically-oriented problems is difficult to overstate.
Here is a simple consequence designed to work directly with simplicial maps. We say that two
simplicial maps f , g : K → L are contiguous if for any simplex σ of K, the union f (σ) ∪ g(σ) is a
simplex of L.

COROLLARY 2.9. If f , g : K → L are contiguous, then they must be homotopic.

PROOF. For each simplex σ in K, let C(σ) ⊂ |L| be the geometric realization of the union-
simplex f (σ) ∪ g(σ). This assignment C prescribes a carrier for K in |L|; clearly, C carries both f
and g. And finally, since solid simplices are contractible by Proposition 2.6, the desired conclu-
sion follows from Lemma 2.8 (b). �

This result has satisfying and immediate applications: for instance, we can now easily show
that Cone(K) is contractible for any simplicial complex K. Writing v∗ for the additional vertex as
in Definition 1.19, apply Corollary 2.9 to the case where f is the identity map on Cone(K) while
g is the map sending every vertex to v∗.

1Here we have used the fact that the boundary of a product bd(P×Q) is the union (P× bd Q) ∪ (bd P×Q).
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2.4 FIBERS

Let f : K → L be a simplicial map; for each simplex τ in L, the fiber of f under τ is the
collection of simplices in K given by

τ/ f = {σ ∈ K | f (σ) ≤ τ} . (2)

Each such fiber is a subcomplex of K; and moreover, τ/ f is a subcomplex of τ′/ f whenever
τ ≤ τ′ in L. We will use the Carrier lemma three times below to show that simplicial maps
with contractible fibers induce homotopy equivalences — this forms a special case of a far more
general result called Quillen’s Theorem A.

THEOREM 2.10. (Quillen’s Fiber Theorem) Let f : K → L be a simplicial map. If the fiber
τ/ f is contractible for every simplex τ in L, then the induced continuous map | f | : |K| → |L|
admits a homotopy inverse G : |L| → |K|; and in particular, K and L are homotopy equivalent.

PROOF. For each simplex τ of L, let C(τ) ⊂ |K| be the geometric realization of the fiber τ/F;
this provides a carrier for L in |K| with each C(τ) contractible, so by Lemma 2.8 (a) we know
that there exists a continuous G : |L| → |K| satisfying G(|τ|) ⊂ C(τ) = |τ/ f | for all τ in L. We
will confirm that any such G is a homotopy inverse for | f |.

1. | f | ◦G is homotopic to the identity on L: for each simplex τ in L, we have the containment

| f | ◦ G(|τ|) ⊂ |τ|,
simply because G(|τ|) is contained in |τ/ f |. Therefore, the assignment CL(τ) = |τ| prescribes
a carrier (for L in |L|) which carries both | f | ◦ G and the identity map on L. Since each |τ| is
contractible by Proposition 2.6, we have from Lemma 2.8 (b) that | f | ◦ G is homotopic to the
identity on L as desired.

2. G ◦ | f | is homotopic to the identity on K: for each simplex σ in K, we know from Proposi-
tion 1.11 that the | f |-image of |σ| is exactly | f (σ)| ⊂ |L|. Recall that by our construction of G, we
have the containment

G(| f (σ)|) ⊂ C( f (σ)) = | f (σ)/ f |.
So if we define CK to be the carrier for K in |K| given by CK(σ) = | f (σ)/ f |, we know that CK
carries G ◦ | f |. Note also that σ automatically lies in f (σ)/ f by (2), so CK also carries the identity
map on K. Since each CK(σ) is contractible by our assumption on the fibers of f , a final appeal
to Lemma 2.8 (b) concludes the argument. �

The strength of Quillen’s fiber theorem lies in the fact that it allows us to conclude homotopy
equivalence of simplicial complexes K and L given only a one-way simplicial map f : K → L.
As long as this f has contractible fibers, one is not required to painstakingly construct an explicit
homotopy inverse |L| → |K|.

2.5 NERVES

A finite open cover U• of a topological space X is a collection of open subsets Uα ⊂ X (here α
ranges over some finite index set A) satisfying

X =
⋃

α∈A
Uα.

By keeping track of how the different Uα intersect one another, we can build a simplicial com-
plex on the vertex set A; the hope is to appropriately constrain the cover so that this simplicial
complex is homotopy equivalent to X.
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DEFINITION 2.11. The nerve N(U•) of an open cover {Uα | α ∈ A} of a topological space X
is the simplicial complex whose i-simplices are given by all subsets σ ⊂ A of cardinality (i + 1)
for which the intersection

Supp(σ) :=
⋂

α∈σ

Uα

is nonempty.

This intersection Supp(σ) ⊂ X is called the support of the simplex
σ, and those encountering this notion for the first time should beware
that σ ≤ τ in N(U•) means Supp(σ) ⊃ Supp(τ) as subsets of X. In
particular, the vertices of |N(U•)| have the larger supports than the
edges which admit them as faces, and so on.

Having gone through the effort of finding an open cover U• of a
topological space X, one wonders to what extent the homotopy type
of X is captured by the geometric realization |N(U•)| of the associ-
ated nerve. The task appears absolutely hopeless at first glance —
for instance, we could always choose U• to consist of a single subset
U1 = X, in which case its nerve is just ∆(0) regardless of X. As with
most of the other results described here, the key to solving this problem is contractibility. If we
require all nonempty supports to be contractible subsets of X, then the following miracle occurs.

THEOREM 2.12. (The Nerve theorem) Let {Uα | α ∈ A} be a finite open cover of a topological
space X. If each simplex σ ∈ N(U•) has contractible support Supp(σ) ⊂ X, then |N(U•)| is
homotopy equivalent to X.

PROOF. Let X(U•) be the subset of the product X × |N(U•)| containing all pairs (x, u) for
which there is a simplex σ in N(U•) satisfying both x ∈ Supp(σ) and u ∈ |σ|. There are natural
projection maps from X(U•) to both X and |N(U•)|:

X(U•) q
** **

p

uuuuX |N(U•)|

In particular, p(x, u) = x and q(x, u) = u for every (x, u) in X(U•). Next, we show that for each
point x in X and u in |N(U•)|, the fibers p−1(x) and q−1(u) are contractible subsets of X(U•).

1. Fibers of p: For each point x in X, the fiber p−1(x) ⊂ X(U•) is homeomorphic to the set
of all u ∈ |N(U•)| lying in the realizations of simplices σ whose supports contain x. But all
such σ must be faces of the single simplex σx in N(U•) whose support is the intersection of all
Uα satisfying x ∈ Uα. Thus, p−1(x) is homeomorphic to the geometric realization of |σx|, which
must be contractible by Proposition 2.6.

2. Fibers of q: Given u in |N(U•)|, let σu ∈ N(U•) be the unique simplex containing u
in the interior of its realization. The fiber q−1(u) ⊂ X(U•) is homeomorphic to the support
Supp(σu) ⊂ X, which is contractible by assumption.

3. Finale: There is a variant of Theorem 2.10 which applies to a large class of continuous
(not necessarily simplicial) maps between metric spaces (not necessarily simplicial complexes).
In particular, this result implies that sufficiently well-behaved maps — such as our p and q —
induce homotopy equivalences if their fibers over all points of their codomains are contractible2.

2For details, see the main result of S Smale’s 1957 paper A Vietoris Mapping Theorem for Homotopy.
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An appeal to this modified fiber theorem establishes that X and |N(U•)| are both homotopy
equivalent to X(U•) via p and q respectively, so the desired conclusion follows. �

There are at least three things to be noted about the Nerve theorem and its proof. First, it was
really convenient to have a fiber theorem at our disposal — not only did we avoid having to
build any homotopic inverses, but we even managed to avoid building a one-way map relating
X to |N(U•)|. Second, the Nerve theorem gives us a mechanism for going back from topolog-
ical spaces to simplicial complexes; in that sense, it constitutes a sort of converse to geometric
realizations from Definition 1.7. And third, this theorem guarantees that Čech filtrations from
Definition 1.16 accurately capture the homotopy type of the underlying union of balls at each
scale.

COROLLARY 2.13. Let M ⊂ Rn be a finite set of points. For each radius ε > 0, the union
M+ε ⊂ Rn of radius ε Euclidean balls around the points of M is homotopy equivalent to the geometric
realization of the Čech complex Cε(M).

PROOF. For each point x in M, let Bε(x) be the open ball of radius ε around x. By definition
of M+ε, we have

M+ε =
⋃

x∈M
Bε(x),

so the collection {Bε(x) | x ∈ M} constitutes an open cover of M+ε. The Čech complex Cε(M) is
precisely the nerve of this cover, so the desired conclusion follows from the Nerve theorem if we
can show that nonempty intersections of Euclidean balls are contactible. Such intersections are
always convex subsets of Rn, and their contractibility will be established in one of the Exercises
of this Chapter. �

There are no homotopical guarantees analogous to the above result which apply to the Vietoris-
Rips filtration.

2.6 ELEMENTARY COLLAPSES

There is a simple combinatorial operation on simplicial complexes which allows us to find
homotopy-equivalent subcomplexes by performing a series of moves; each such move removes
two adjacent simplices (σ < τ) at a time, and has a very concrete and algorithmic flavor. For
instance, one can show that ∆(2) is contractible simply by drawing the following diagram:

Our goal in this section is to describe these homotopy-preserving moves.
Let K be a simplicial complex. We call two distinct simplices (σ < τ) of K a free face pair if

the open star of σ (see Definition 1.17) satifies stK(σ) = {σ, τ}. For such a pair we immediately
have dim τ = dim σ + 1; moreover, there can be no other simplices in K (besides σ and τ) which
admit σ as a face.
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PROPOSITION 2.14. If (σ < τ) is a free face pair in K, then the collection K′ = K− {σ, τ} forms
a subcomplex of K, and in fact K′ is homotopy equivalent to K.

PROOF. Assume for the sake of contradiction that some simplex γ in K′ is missing a face;
such a γ would have to satisfy γ > σ in K; this forces stK(σ) to contain γ and violates our free
face assumption. Thus, K′ ⊂ K is a subcomplex. To see the desired homotopy equivalence to K,
consider the following figure:

There is a map r : |K| → |K′| which is the identity away from |τ| and sends all points of
|τ| along straight line segments to points in the union

⋃
σ 6=η<τ |η| of realizations of all faces of

τ except σ. This map serves as a homotopy inverse to the inclusion i : K′ ↪→ K; on the one
hand, the composite r ◦ |i| is the identity map on |K′|. And on the other hand, these straight line
segments generate a homotopy from |i| ◦ r to the identity map on K. �

The removal of a free face pair (σ < τ) from K is called an elementary collapse. These can be
iterated, as shown in our diagrammatic reduction of ∆(2) to ∆(0) drawn above. One important
point to note, visible already in the figure above, is that the subcomplex K′ = K − {σ, τ} might
contain free face pairs that were unavailable in K: when we remove the pair (12 < 012) from
∆(2), the pairs (1 < 01) and (2 < 02) become free and can be safely removed in the second step.
We say that K collapses onto a subcomplex L if there is a filtration (as in Definition 1.6) of the
form

L = F1K ⊂ F2K ⊂ · · · ⊂ FnK = K
where each FiK is obtained by removing a single free-face pair from the subsequent Fi+1K. By
Proposition 2.14, all the FiK are homotopy equivalent to each other in this case. Thanks to
their simple combinatorial nature, elementary collapses can be algorithmically implemented on
a computer.

2.7 BONUS: SIMPLICIAL APPROXIMATION

The contents of the section are not used elsewhere in this text; they have been included here because Theorem
2.15 described below is a foundational result in simplicial algebraic topology. It allows us to study homotopy classes
functions between (geometric realizations of) simplicial complexes using only simplicial maps rather than arbitrary
continuous ones.

Here is a fairly natural challenge in light of our quest to understand simplicial complexes up
to homotopy equivalence.

Assume that F : |K| → |L| is a continuous map between the geometric realizations of
two simplicial complexes K and L. Does there exist a simplicial map f : K → L so that
| f | is homotopic to F?
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Unfortunately, the answer to this question as stated is no. One way to see why (without doing
any heavy computations) is to note that the set of all simplicial maps K → L is always finite,
so it is unreasonable to expect simplicial maps to attain all possible homotopy types achievable
by the (typically very infinite) set of continuous maps |K| → |L|. The good news, however, is
that the answer to our challenge becomes yes if we give ourselves the ability to barycentrically
subdivide the domain K finitely many times (as described in Definition 1.12). The following
result is called the simplicial approximation theorem.

THEOREM 2.15. Let F : |K| → |L| be a continuous map between the geometric realizations of
two simplicial complexes. There exists an integer n ≥ 0 and a simplicial map f : SdnK → L so that
| f | is homotopic to F.

In general there is no known bound on how many barycentric subdivisions of K might be
required to build the simplicial approximation f for a given F.

EXERCISES

EXERCISE 2.1. Prove that homotopy equivalence is an equivalence relation on the class of
all topological spaces.

EXERCISE 2.2. Show that if two topological spaces X and Y are homeomorphic, then they
must also be homotopy equivalent.

EXERCISE 2.3. Show that if Y is a contractible space, then then for any topological space X
the product X×Y is homotopy equivalent to X.

EXERCISE 2.4. Show that if Y is contractible then any pair of maps f , g : X → Y are homo-
topic.

EXERCISE 2.5. A subset P ⊂ Rn is said to be convex if for every pair of points x, y in P the
line segment {tx + (1− t)y | 0 ≤ t ≤ 1} lies inside P. Show that every nonempty convex set
is contractible.

EXERCISE 2.6. Show that the subspaces X = {0} and Y = {0, 1} of the real line R are not
homotopy equivalent.

EXERCISE 2.7. Prove the assertion (a) from Lemma 2.8. [Hint: the filtration SiK, the induc-
tive strategy and Lemma 2.5 are all useful here].

EXERCISE 2.8. Consider two simplicial maps from ∂∆(2) to the illustrated simplicial com-
plex described as follows. The first one sends vertices {0, 1, 2} to {a0, a1, a2} in order, while the
second one sends the same vertices to {b0, b1, b2} respectively. Show that these two maps are
homotopic, keeping in mind that the left-most edge in the figure is identified with the right-
most edge. [Hint: first show that the unit square [0, 1]× [0, 1] is contractible by Proposition 2.6
plus Exercise 2.3, and then apply Lemma 2.8]
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EXERCISE 2.9. Given a simplicial map f : K → L, show that for each simplex τ in L the
fiber τ/ f as defined in (2) is a subcomplex of K; also show that τ/ f is a subcomplex of τ′/ f
whenever τ ≤ τ′ holds in L.

EXERCISE 2.10. Find the smallest open cover of the circle with contractible supports. What
is the nerve of this cover?

EXERCISE 2.11. Find a cover of the circle containing at least two open sets which violates
the hypotheses of the nerve lemma. What is the nerve of this bad cover?

EXERCISE 2.12. Show that trees (connected graphs with no cycles) are simple homotopy-
equivalent to ∆(0), and hence contractible. [Hint: induction on edges plus Proposition 2.14].

EXERCISE 2.13. Use a suitable sequence of elementary collapses to show that the simplicial
complex drawn in Exercise 2.8 is homotopy-equivalent to the subcomplex consisting of the
simplices {b0, b1, b2, b0b1, b1b2, b0b2}.


